Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité, les algorithmes et leurs applications pour assurer une convergence efficace vers les minima mondiaux.
Couvre les bases de l'optimisation convexe, y compris les problèmes mathématiques, les minimiseurs et les concepts de solution, en mettant l'accent sur des méthodes efficaces et des applications pratiques.
Explore la convexification des problèmes non convexes grâce à des astuces sur le noyau, à l'interprétation de la sensibilité et à la réduction de la dimensionnalité non linéaire.
Couvre le débruitage et la reconstruction d'images en utilisant une minimisation totale des variations et discute des effets visuels des différentes forces de régularisation.
Explore la somme des polynômes carrés et la programmation semi-définie dans l'optimisation polynomiale, permettant l'approximation des polynômes non convexes avec SDP convexe.