Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage à partir de données interconnectées avec des graphiques, couvrant les objectifs de recherche modernes de ML, les méthodes pionnières, les applications interdisciplinaires, et la démocratisation du graphique ML.
Explore l'apprentissage bio-inspiré avec des réseaux neuronaux et des algorithmes génétiques, couvrant la structure, la formation et les applications pratiques.
Introduit Q-Learning, Deep Q-Learning, l'algorithme REINFORCE et Monte-Carlo Tree Search dans l'apprentissage par renforcement, aboutissant à AlphaGo Zero.
Explore le Dropout en tant que méthode de régularisation dans les réseaux neuronaux profonds, en mettant l'accent sur sa mise en œuvre pratique et son efficacité.
Plonge dans l'impact de l'apprentissage profond sur les systèmes de connaissances non conceptuels et les progrès dans les transformateurs et les réseaux antagonistes génératifs.
Explore la logique de la fonction neuronale, le modèle Perceptron, les applications d'apprentissage profond et les niveaux d'abstraction dans les modèles neuronaux.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.