Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Introduit un cadre fonctionnel pour les réseaux neuronaux profonds avec des splines adaptatives linéaires à la pièce, mettant l'accent sur la reconstruction de l'image biomédicale et les défis des splines profondes.
Explore la capacité des réseaux de neurones à apprendre des fonctionnalités et à faire des prédictions linéaires, en soulignant l'importance de la quantité de données pour une performance efficace.
Couvre les questions pratiques et les objectifs de l'apprentissage profond, y compris les types de neurones, l'architecture du réseau, l'optimisation et l'initialisation du poids.