Couvre les réseaux neuronaux convolutionnels, y compris les couches, les stratégies de formation, les architectures standard, les tâches comme la segmentation sémantique, et les astuces d'apprentissage profond.
Explique le processus d'apprentissage dans les réseaux neuronaux multicouches, y compris la rétropropagation, les fonctions d'activation, la mise à jour des poids et la rétropropagation des erreurs.
Explore les réseaux neuronaux à deux couches et la rétropropagation pour l'apprentissage des espaces de fonctionnalités et l'approximation des fonctions continues.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Explore l'apprentissage bio-inspiré avec des réseaux neuronaux et des algorithmes génétiques, couvrant la structure, la formation et les applications pratiques.