Explore les modèles de calcul du système visuel ventral, en se concentrant sur l'optimisation des réseaux pour les tâches réelles et la comparaison avec les données cérébrales.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
S'insère dans le concept de l'espace péripersonnel en tant qu'interface primaire pour les interactions auto-environnementales et sa sensibilité à la perception sociale.
Introduit un cadre fonctionnel pour les réseaux neuronaux profonds avec des splines adaptatives linéaires à la pièce, mettant l'accent sur la reconstruction de l'image biomédicale et les défis des splines profondes.
Couvre les réseaux neuronaux convolutionnels, y compris les couches, les stratégies de formation, les architectures standard, les tâches comme la segmentation sémantique, et les astuces d'apprentissage profond.
Couvre les bases NeuroM, y compris la vérification de la qualité des neurones, l'extraction de la morphométrie et la visualisation des neurones dans différents formats.
Explore l'avancement des modèles système de l'intelligence humaine au moyen d'analyses comparatives intégrées et de l'importance de Brain-Score pour des comparaisons équitables de modèles.
Couvre la fonction neuronale, les modèles hiérarchiques, les comportements des taxis odorants et les paramètres de circuit disparates dans 18 diapositives.