Construire des réseaux neuraux : assembler les régions du cerveau
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les modèles de connectivité neuronale, les probabilités de connexion et les techniques expérimentales utilisées pour étudier la connectivité synaptique.
Explore différentes formes de plasticité synaptique et les mécanismes qui les sous-tendent, en mettant l'accent sur le rôle du calcium dans l'induction et le maintien des changements plastiques.
Couvre l'informatique neuromorphe, les défis dans l'informatique ternaire et binaire, les simulations matérielles du cerveau, et les nouveaux matériaux pour les cellules cérébrales artificielles.
Explore le regroupement dans les réseaux de neurosciences silico, la définition de l'espace et le traitement des données rares pour reconstruire les régions du cerveau.
Explore la classification et les comportements électriques des interneurons GABAergiques dans le cortex cérébral, soulignant l'importance d'une terminologie cohérente et de la compréhension de la diversité des canaux ioniques.
Explore l'analyse des données de neurosciences, en mettant l'accent sur les données structurées, les outils de calcul et la tendance des neurosciences de calcul en tant que service.
Explore le modèle Hodgkin-Huxley, les phases de potentiel d'action, la dynamique ionique, la théorie des câbles et la modélisation compartimentale dans l'excitabilité neuronale.
Souligne la reproductibilité et la réutilisabilité des données dans les neurosciences silico, en mettant l'accent sur les outils et les méthodes de neuroinformatique.