Explore l'équivalence dans les espaces vectoriels, couvrant les conditions pour que les déclarations soient considérées comme équivalentes et les propriétés des bases algébriques.
Couvre les espaces tangents et les submersions en géométrie différentielle, en mettant l'accent sur les espaces vectoriels et les structures différentiables.
Explore les sous-espaces vectoriels et les combinaisons linéaires en algèbre linéaire, en se concentrant sur la relation réciproque entre les lignes, les colonnes et les éléments.