Discute de l'application du théorème principal à la régression des moindres carrés dans une RKHS, en se concentrant sur LR de la borne de Rademacher et la constante de Lipschitz.
Couvre l'estimation des points, les intervalles de confiance et les tests d'hypothèses pour les fonctions lisses à l'aide de modèles mixtes et de lissage des splines.
Explore l'inférence statistique pour les données de banditisme, en mettant l'accent sur les actions de traitement personnalisées et les défis des estimateurs standards.
Introduit une analyse de régression pour la modélisation de données multivariées, couvrant l'algèbre matricielle, l'interprétation des coefficients et les intervalles d'essai.
Couvre les bases de la régression linéaire, y compris l'OLS, l'hétéroskédasticité, l'autocorrélation, les variables instrumentales, l'estimation maximale de la probabilité, l'analyse des séries chronologiques et les conseils pratiques.