Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Couvre les techniques de gestion des données manquantes et de normalisation des fonctionnalités, ainsi que la transformation des données d'entrée et de sortie.
Couvre l'optimisation dans l'apprentissage automatique, en mettant l'accent sur la descente par gradient pour la régression linéaire et logistique, la descente par gradient stochastique et des considérations pratiques.
Couvre l'histoire et les concepts fondamentaux des réseaux neuronaux, y compris le modèle mathématique d'un neurone, la descente de gradient et le perceptron multicouche.