Bases d'optimisation : Optimisation sans contrainte et descente progressive
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les astuces stochastiques softmax, la reparamétrisation et l'argmax, en abordant les défis dans l'estimation des attentes et la variance des gradients.
Explore l'optimalité des taux de convergence dans l'optimisation convexe, en mettant l'accent sur la descente accélérée des gradients et les méthodes d'adaptation.
Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Analyse les problèmes d'optimisation sans contrainte à l'aide de méthodes de descente de gradient et explore les taux de convergence et le comportement de l'algorithme.
Explore les matrices de projection dans le contexte d'algorithmes de déclivité et de coupe-minute, en mettant l'accent sur leur rôle dans l'optimisation.
Introduit les bases de l'algèbre linéaire, du calcul et de l'optimisation dans les espaces euclidien, en mettant l'accent sur la puissance de l'optimisation en tant qu'outil de modélisation.
Explore l'optimisation non linéaire, en se concentrant sur la méthode de Newton et les méthodes de descente pour trouver des solutions optimales efficacement.