Explore l'évolution de l'analyse des données à l'IA et au ML, en mettant l'accent sur les mégadonnées, l'apprentissage automatique et l'interaction avec les médias sociaux.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Explore les défis de gestion du stockage dans la transition vers les lacs de données, en abordant l'hétérogénéité des logiciels et du matériel, la conception unifiée du stockage et l'optimisation des performances.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Explore l'importance des métadonnées dans l'organisation des bibliothèques médiatiques et les défis que pose la récupération efficace d'oeuvres ou d'artistes spécifiques.
Couvre les fondements des systèmes de base de données, y compris la modélisation des données, le traitement de l'information et les défis de la gestion d'importants volumes de données.