Théorie de calcul : Complexité monotone et limites inférieures de XOR-SAT
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage automatique efficace par la synthèse des données, couvrant les défis, les méthodes et les applications impactées dans divers domaines.
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Explore les courbes de double descente et la surparamétrisation dans les modèles d'apprentissage automatique, en soulignant les risques et les avantages.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explore la maximisation de la diversité dans la sélection des documents, la détermination des cliques de graphes, les théorèmes sur le type négatif et l'optimisation convexe.
Couvre un examen des concepts d'apprentissage automatique, y compris l'apprentissage supervisé, la classification vs régression, les modèles linéaires, les fonctions du noyau, les machines vectorielles de soutien, la réduction de la dimensionnalité, les modèles génératifs profonds et la validation croisée.
Couvre les bases de l'apprentissage automatique, les défis en matière de déploiement, les attaques contradictoires et les préoccupations en matière de protection de la vie privée.
Explore la programmation dynamique du problème Knapsack, en discutant des stratégies, des algorithmes, de la dureté du NP et de l'analyse de la complexité temporelle.