Théorie de calcul : Complexité monotone et limites inférieures de XOR-SAT
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Explore l'apprentissage de données interconnectées à l'aide de graphiques, couvrant les défis, la conception du GNN, les paysages de recherche et la démocratisation du graphique ML.
Explore une variété de problèmes ouverts en théorie des graphes et en complexité informatique, mettant au défi les étudiants d'analyser et de résoudre des problèmes complexes.
Défis posés par l'apprentissage des modèles probabilistes, couvrant la complexité des calculs, la reconstruction des données et les lacunes statistiques.
Introduit l'apprentissage automatique scientifique, en mettant l'accent sur son application dans divers domaines scientifiques et sur le lien entre l'apprentissage automatique et la physique.
Explore les transitions de phase en physique et les problèmes de calcul, mettant en évidence les défis rencontrés par les algorithmes et l'application des principes de physique dans la compréhension des réseaux neuronaux.