Explore les fonctions convexes, les transformations d'affines, le maximum pointu, la minimisation, le Lemma de Schur et l'entropie relative dans l'optimisation mathématique.
Explore les cadres de sondage suisses, la transformation continue du territoire, les principes de suivi par satellite et la conversion de coordonnées ellipsoïdes.
Explore les signaux, les instruments et les systèmes, couvrant ADC, Fourier Transform, échantillonnage, reconstruction des signaux, alias et filtres anti-alias.
Couvre la transformation des normales de surface, la perspective forcée, les algorithmes d'ombrage et le calcul des valeurs d'entrée dans les fragment shaders.
Explore la théorie et les applications de l'optimisation convexe, couvrant des sujets tels que la fonction log-déterminante, les transformations affines et l'entropie relative.
Explore les fonctions convexes, y compris la convexité, les transformations, les exemples, la minimisation, l'intuition géométrique, le lemme de Schur, la fonction de distance, la fonction de perspective et l'entropie relative.