Explore l'apprentissage de données interconnectées à l'aide de graphiques, couvrant les défis, la conception du GNN, les paysages de recherche et la démocratisation du graphique ML.
Explore l'analyse statistique des données du réseau, qui couvre les structures graphiques, les modèles, les statistiques et les méthodes d'échantillonnage.
Couvre les concepts d'apprentissage profond, en se concentrant sur les graphiques, les transformateurs et leurs applications dans le traitement des données multimodales.
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.