Méthodes Monte-Carlo pour l'apprentissage par renforcement
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Couvre les principes fondamentaux de la théorie du contrôle optimal, en se concentrant sur la définition des OCP, l'existence de solutions, les critères de performance, les contraintes physiques et le principe d'optimalité.
Explore les défis de l'apprentissage profond et des applications d'apprentissage automatique, couvrant la surveillance, la confidentialité, la manipulation, l'équité, l'interprétabilité, l'efficacité énergétique, les coûts et la généralisation.
Couvre l'algorithme de maximisation des attentes et les techniques de regroupement, en mettant l'accent sur l'échantillonnage Gibbs et l'équilibre détaillé.
Explore l'apprentissage de données interconnectées à l'aide de graphiques, couvrant les défis, la conception du GNN, les paysages de recherche et la démocratisation du graphique ML.
Explore les méthodes de dégradé de politique sur plusieurs étapes temporelles, en mettant l'accent sur la mise à jour des paramètres de politique pour maximiser les récompenses.
Explore l'apprentissage à partir de données interconnectées avec des graphiques, couvrant les objectifs de recherche modernes de ML, les méthodes pionnières, les applications interdisciplinaires, et la démocratisation du graphique ML.