Explore les signaux de débruitage avec des modèles de mélange gaussien et l'algorithme EM, l'analyse de signal EMG et la segmentation d'image à l'aide de modèles markoviens.
Explore la transformée de Fourier, le filtrage de fréquence, la segmentation et l'estimation de la taille des particules à l'aide de techniques d'analyse d'images.
Discute de l'analyse des textures dans les images, en se concentrant sur les propriétés statistiques et structurelles, les techniques de segmentation et les applications d'apprentissage automatique pour la classification des textures.
Couvre les techniques de récupération d'informations de forme 3D à partir d'images 2D à l'aide de modèles d'ombrage et d'approches modernes d'apprentissage profond.
Introduit des bases d'apprentissage automatique, couvrant la segmentation des données, le regroupement, la classification, et des applications pratiques comme la classification d'image et la similarité du visage.