Couvre l'analyse causale des données d'observation, des pièges, des outils permettant de tirer des conclusions valables et d'aborder les variables confusionnelles.
Explore les défis des études observationnelles, en soulignant l'importance de la randomisation et de l'analyse de sensibilité pour tirer des conclusions valables à partir de «données trouvées».
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.
Couvre les bases de la théorie des probabilités, y compris les définitions, les calculs et les concepts importants pour l'inférence statistique et l'apprentissage automatique.
Présente des concepts clés en probabilité et en statistiques, couvrant des expériences aléatoires, des événements, des intersections, des syndicats et plus encore.
Introduit des concepts clés en probabilité et en statistique, illustrant leur application à travers divers exemples et soulignant l'importance du langage mathématique dans la compréhension de l'univers.