Couvre l'analyse numérique et l'optimisation, en se concentrant sur la résolution de systèmes linéaires dans des dimensions supérieures à l'aide de méthodes à différences finies.
Explore les fondamentaux de la théorie de Galois, y compris les éléments séparables, les champs de décomposition et les groupes de Galois, en soulignant l'importance des extensions de degrés finis et de la structure des extensions de Galois.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.