Explore les méthodes itératives pour résoudre les systèmes linéaires, y compris les méthodes Jacobi et Gauss-Seidel, la factorisation Cholesky et le gradient conjugué préconditionné.
Explore la résolution de systèmes linéaires et aborde la non-linéarité dans les simulations de flux numériques en utilisant des méthodes multigrilles et de linéarisation.
Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.
Explore les méthodes itératives pour les équations linéaires, y compris les méthodes Jacobi et Gauss-Seidel, les critères de convergence et la méthode du gradient conjugué.
Explore les systèmes linéaires, couvrant les méthodes directes et itératives pour les résoudre en mettant l'accent sur les erreurs d'arrondi et l'algorithme de Richardson.