Explore les intégrations de mots, les modèles tels que CBOW et Skipgram, Fasttext, Glove, les intégrations de sous-mots et leurs applications dans la recherche et la classification de documents.
Présente les bases de la récupération d'informations, couvrant la récupération basée sur le texte, les caractéristiques du document, les fonctions de similarité et la différence entre la récupération booléenne et la récupération classée.
Couvre l'indexation sémantique latente, une méthode pour améliorer la récupération d'informations en cartographiant des documents et des requêtes dans un espace conceptuel de dimension inférieure.
Explore la gestion du texte, en se concentrant sur les matrices, les documents et les sujets, y compris les défis de la classification des documents et des modèles avancés comme BERT.
Explore la sémantique lexicale, le sens des mots, les relations sémantiques et WordNet, en mettant en évidence les applications dans l'ingénierie du langage et la récupération d'informations.
Explore l'indexation sémantique latente, la construction de vocabulaire, la création de matrices de documents, la transformation de requêtes et la récupération de documents en utilisant la similarité cosinus.
Introduit des intégrations de mots, expliquant comment ils capturent les significations des mots en fonction du contexte et de leurs applications dans les tâches de traitement du langage naturel.