Couvre les réseaux neuronaux convolutionnels, y compris les couches, les stratégies de formation, les architectures standard, les tâches comme la segmentation sémantique, et les astuces d'apprentissage profond.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Introduit des réseaux neuronaux, des fonctions d'activation et de rétropropagation pour la formation, en répondant aux défis et aux méthodes puissantes.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Explore les bases des réseaux neuraux, le problème XOR, la classification et les applications pratiques comme la prévision des données météorologiques.
Explore le développement historique et la formation de perceptrons multicouches, en mettant l'accent sur l'algorithme de rétropropagation et la conception de fonctionnalités.