Explore les contraintes, l'efficacité et la complexité de l'algèbre linéaire, en mettant l'accent sur la convexité et la complexité du pire des cas dans l'analyse algorithmique.
Présente les principes fondamentaux de la théorie de l'information, de l'informatique et de la communication, couvrant la génomique, l'imagerie médicale et la technologie d'assistance.
Explore les conclusions de la théorie de l'apprentissage statistique, en mettant l'accent sur la complexité des fonctions, la généralisation et le compromis biais-variance.
Explore la formulation et la complexité des machines vectorielles de soutien, y compris les formes primaires et doubles, l'interprétation géométrique et les implications algorithmiques.