Régression non paramétrique : estimation polynomiale locale
Séances de cours associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'application de l'apprentissage automatique dans la dynamique moléculaire et les matériaux, en mettant l'accent sur la création de caractéristiques significatives et l'importance de la généralisabilité.
Couvre l'apprentissage supervisé en mettant l'accent sur la régression linéaire, y compris des sujets comme la classification numérique, la détection des pourriels et la prédiction de la vitesse du vent.
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Couvre l'analyse de régression pour les données de désassemblage à l'aide de la modélisation de régression linéaire, des transformations, des interprétations des coefficients et des modèles linéaires généralisés.
Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.
Explore l'apprentissage supervisé en mettant l'accent sur les méthodes de régression, y compris l'ajustement des modèles, la régularisation, la sélection des modèles et l'évaluation du rendement.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Explore les méthodes du noyau dans l'apprentissage automatique, en mettant l'accent sur leur application dans les tâches de régression et la prévention du surajustement.