Caractérisation de la zone de capacité d'approvisionnement de la réserve des réseaux de distribution actifs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la régression logistique, les fonctions de coût, la descente en gradient et la modélisation de probabilité à l'aide de la fonction sigmoïde logistique.
Explore les modèles linéaires et quadratiques de Scheffé en mélangeant des plans et des schémas ternaires, en mettant l'accent sur les contraintes et les représentations.
Couvre les diagnostics de régression pour les modèles linéaires, en soulignant limportance de vérifier les hypothèses et didentifier les valeurs aberrantes et les observations influentes.
Explore Ridge et Lasso Regression pour la régularisation dans les modèles d'apprentissage automatique, en mettant l'accent sur le réglage hyperparamétrique et la visualisation des coefficients des paramètres.
Explore la méthodologie de conception expérimentale, y compris les plans classiques, la méthode simplex et l'analyse canonique pour les modèles linéaires et quadratiques.
Introduit la méthode de Newton pour résoudre les équations non linéaires itérativement, en soulignant sa convergence rapide, mais aussi son incapacité potentielle à converger dans certains cas.