Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la résolution du problème Poisson en utilisant la transformée de Fourier, en discutant des termes sources, des conditions aux limites et de l'unicité de la solution.
Explore la motivation derrière les séries et les transformations de Fourier, leurs principes fondamentaux et leurs applications dans la résolution d'équations différentielles.
Explore les propriétés de la transformée de Fourier avec des dérivés, cruciales pour la résolution des équations, et introduit la transformée de Laplace pour la transformation du signal.
Couvre le problème de Sturm-Liouville, les équations différentielles et les transformées de Fourier pour résoudre des équations avec des conditions spécifiques.
Explore l'application de la transformée de Fourier aux systèmes LTI, y compris la réponse en fréquence, la convolution, la différenciation et la résolution d'équations différentielles.
Couvre les équations différentielles partielles, les Hessiens, et le Théorème de la fonction implicite, avec un accent sur la résolution des questions d'examen.
Couvre les bases des équations différentielles partielles, en mettant l'accent sur la modélisation du transfert de chaleur et les méthodes de solution numérique.
Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.
Couvre la transformée de Fourier, ses propriétés et ses applications dans le traitement du signal et les équations différentielles, démontrant son importance dans l'analyse mathématique.