Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Explore les définitions des équations différentielles ordinaires, les solutions, les degrés polynomiaux, les solutions autonomes, les solutions maximales et le problème de Cauchy.
Couvre un examen des structures algébriques telles que les anneaux, les champs et les groupes, y compris les domaines intégraux, les idéaux et les champs finis.