Explore les modèles de préformation comme BERT, T5 et GPT, en discutant de leurs objectifs de formation et de leurs applications dans le traitement des langues naturelles.
Déplacez-vous dans la façon dont la structure et le fonctionnement biologiques sont décodés par l'apprentissage non supervisé des séquences protéiques.
Explore l'avancement des modèles système de l'intelligence humaine au moyen d'analyses comparatives intégrées et de l'importance de Brain-Score pour des comparaisons équitables de modèles.
Couvre les bases de la récupération d'informations à l'aide de modèles d'espace vectoriel et d'exercices pratiques sur la rétroaction de pertinence et la numérisation de la liste de publication.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore le degré de nœud et la force dans les neurosciences réseau, en discutant des réseaux aléatoires et réels et les défis d'adapter les lois de puissance aux données réelles.