Explore la naturalité dans les complexes de chaînes, les groupes d'homologie et les groupes abéliens, en mettant l'accent sur la commutativité des carrés et du Cinq-Lemme.
Introduit les axiomes d'Eilenberg-Steenrod dans la théorie de l'homologie, définissant des propriétés telles que l'invariance et l'exactitude de l'homotopie.
Se penche sur l'application de l'homologie cellulaire pour calculer les groupes d'homologie et les caractéristiques d'Euler, démontrant ses implications pratiques.
Présente l'homologie comme un outil pour distinguer les espaces dans toutes les dimensions et fournit des informations sur sa construction et ses applications.