Apprentissage Sparse Caractéristiques: Encombrant dans les réseaux neuraux
Séances de cours associées (77)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Plonge dans la dimensionnalité de l'apprentissage profond, la représentation des données et la performance dans la classification des données à grande dimension, explorant la malédiction de la dimensionnalité et le noyau tangent neuronal.
Explore le choix des architectures de réseaux graphes neuraux, en évaluant la complexité du modèle et les performances à partir de statistiques de données.
Explore le calcul des champs électriques à partir d'une demi-sphère chargée, en mettant l'accent sur les considérations de symétrie et les techniques de résolution de problèmes efficaces.
Explore les algorithmes d'apprentissage automatique, les techniques de sélection des fonctionnalités telles que les descripteurs FAST et BRIEF, et les limites de l'apprentissage profond.
Explore l'apprentissage auto-supervisé, l'apprentissage par transfert, les tâches de prédiction SSL, l'apprentissage des fonctionnalités, les rotations d'images, l'apprentissage contrasté et les apprenants en vision.