Explore les prévisions dans l'analyse des séries chronologiques, les processus de mémoire longue et les modèles ARCH pour la modélisation de la volatilité.
Couvre les modèles ARMA pour la prévision des séries chronologiques, en discutant des implications, des propriétés des erreurs de prévision, des défis avec les prédictions et des modèles de covariance.
Explore la gestion de la demande, les méthodes de prévision, l'effet bullwhip, l'impact de l'industrie horlogère suisse et les biais cognitifs dans les affaires.
Explore l'estimation, la prévision et la comparaison de modèles dans l'analyse de séries chronologiques à l'aide d'exemples de données réelles pour motiver l'étude.
Explore l'estimation des erreurs dans l'intégration numérique et ses applications dans la prévision, en mettant l'accent sur la méthode de Romberg et l'extrapolation de Richardson.