Couvre les bases de l'apprentissage automatique, y compris la reconnaissance des chiffres manuscrits, la classification supervisée, les limites de décision et l'ajustement des courbes polynômes.
Explore la classification des images en utilisant des arbres de décision et des forêts aléatoires pour réduire la variance et améliorer la robustesse du modèle.
Explore les méthodes du noyau dans l'apprentissage automatique, en mettant l'accent sur leur application dans les tâches de régression et la prévention du surajustement.
Explore l'apprentissage de la fonction du noyau en optimisation convexe, en se concentrant sur la prédiction des sorties à l'aide d'un classificateur linéaire et en sélectionnant les fonctions optimales du noyau par validation croisée.
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.