Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Explore l'optimisation des systèmes neuroprothétiques, y compris la restauration de rétroaction sensorielle et les stratégies de stimulation neuronale.
Explore l'analyse des données neurophysiologiques, couvrant l'identification AP, les taux de tir, l'activité sous le seuil, l'analyse spectrale FFT et l'analyse déclenchée par des événements à l'aide de MATLAB.