Explore l'optimisation convexe, les fonctions convexes et leurs propriétés, y compris la convexité stricte et la convexité forte, ainsi que différents types de fonctions convexes comme les fonctions et les normes affines linéaires.
Introduit les bases de l'optimisation, couvrant les normes, la convexité, la différentiabilité, et plus encore, en mettant l'accent sur les métriques, les normes vectorielles, les normes matricielles et la continuité.
Fournit un aperçu des techniques d'optimisation, en se concentrant sur la descente de gradient et les propriétés des fonctions convexes dans l'apprentissage automatique.
Introduit des bases d'optimisation, couvrant la régression logistique, les dérivés, les fonctions convexes, la descente de gradient et les méthodes de second ordre.