Dynamique neuronale de la cognition : Mémoire associative
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les modèles de calcul du système visuel ventral, en se concentrant sur l'optimisation des réseaux pour les tâches réelles et la comparaison avec les données cérébrales.
Explore le développement historique de l'apprentissage profond, de l'apprentissage par renforcement, des mécanismes d'attention et des systèmes de mémoire en IA inspirés des neurosciences.
Discute de l'évolution des réseaux de neurones artificiels, des défis de l'apprentissage supervisé et du rôle des comportements innés dans la formation du comportement.
Explore la mémoire, l'apprentissage, la charge cognitive et les stratégies de résolution de problèmes pour améliorer l'apprentissage et la performance cognitive.
Couvre l'apprentissage hébbien, le renforcement de l'apprentissage, les types d'apprentissage, les modèles neuronaux, les règles d'apprentissage et l'homéostasie de poids.
Explore l'évolution et la taxonomie des souvenirs, en se concentrant sur les différences SRAM et DRAM, la disposition de la mémoire et la taxonomie fonctionnelle.