Fournit un examen des concepts d'algèbre linéaire cruciaux pour l'optimisation convexe, couvrant des sujets tels que les normes vectorielles, les valeurs propres et les matrices semi-définies positives.
Couvre les concepts essentiels de l'algèbre linéaire pour l'optimisation convexe, y compris les normes vectorielles, la décomposition des valeurs propres et les propriétés matricielles.
Explore la Décomposition de la Valeur Singulière et son rôle dans l'apprentissage non supervisé et la réduction de dimensionnalité, en mettant l'accent sur ses propriétés et applications.