Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'inférence, la construction de modèles, la sélection de variables, la robustesse, la régression régularisée, les modèles mixtes et les méthodes de régression.
Présente les principes fondamentaux de la régression dans l'apprentissage automatique, couvrant la logistique des cours, les concepts clés et l'importance des fonctions de perte dans l'évaluation des modèles.
Couvre des exemples de modèles de décision pour lapprentissage supervisé, y compris la régression, la classification, les paires de classement et le décodage de séquence pour les modèles OCR.
Couvre l'estimation, le rétrécissement et la pénalisation des statistiques pour la science des données, soulignant l'importance d'équilibrer le biais et la variance dans l'estimation des modèles.
Couvre la régression linéaire, la régularisation, les problèmes inverses, la tomographie par rayons X, la reconstruction d'images, l'inférence de données et l'intensité du détecteur.
Couvre les arbres de décision pour la régression et la classification, expliquant la construction des arbres, la sélection des caractéristiques et les critères d'induction.
Explore le modèle de régression linéaire, les propriétés de l'OLS, les tests d'hypothèse, l'interprétation, les transformations et les considérations pratiques.