Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute de la navigation par quadritor en utilisant l'apprentissage de renforcement profond et le contrôle de bas niveau, en mettant l'accent sur l'intelligence visuelle et la robustesse du modèle de regard.
Explore les opportunités d'apprentissage automatique à l'ère de l'IoT, couvrant les algorithmes de formation, l'apprentissage distribué et les techniques de confidentialité.
Couvre l'apprentissage hébbien, le renforcement de l'apprentissage, les types d'apprentissage, les modèles neuronaux, les règles d'apprentissage et l'homéostasie de poids.
Introduit Q-Learning, Deep Q-Learning, l'algorithme REINFORCE et Monte-Carlo Tree Search dans l'apprentissage par renforcement, aboutissant à AlphaGo Zero.
Explore le transfert de style, la traduction d'images, l'apprentissage auto-supervisé, la prédiction vidéo et la génération de description d'images à l'aide de techniques d'apprentissage en profondeur.
Explore l'utilisation de l'apprentissage automatique pour surveiller les récifs coralliens en mer Rouge, en se concentrant sur la reconstruction 3D et l'évaluation de la biodiversité.
Explore l’apprentissage profond avec des images Instagram, comprend la perception des aliments, l’obésité et la santé mentale, et discute de l’impact des images des médias sociaux et des plateformes éphémères comme Snapchat.