Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Examine les éléments fondamentaux de la gestion des données, y compris les modèles, les sources et les querelles, en soulignant l'importance de comprendre et de résoudre les problèmes de données.
Explore les données sur la consommation d'eau à Genève, y compris les graphiques sur la consommation et les pertes, les ensembles de données disponibles et les phases de traitement des données.
Déplacez-vous dans le « virage numérique » de l'histoire, en examinant la recherche historique à l'aide de journaux numérisés et en explorant la réutilisation du texte, l'intégration des mots et la visualisation des données.
Introduit des outils collaboratifs de science des données comme Git et Docker, en mettant l'accent sur le travail d'équipe et les exercices pratiques pour un apprentissage efficace.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.