Explore les fondamentaux de la régression linéaire, la formation des modèles, l'évaluation et les mesures du rendement, en soulignant l'importance de la R2, du MSE et de l'EAM.
Présente les principes fondamentaux de la régression dans l'apprentissage automatique, couvrant la logistique des cours, les concepts clés et l'importance des fonctions de perte dans l'évaluation des modèles.
S'insère dans le compromis entre la flexibilité du modèle et la variation des biais dans la décomposition des erreurs, la régression polynomiale, le KNN, et la malédiction de la dimensionnalité.
Couvre la décomposition des erreurs, la régression polynomiale et les voisins K les plus proches pour la modélisation flexible et les prédictions non linéaires.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.