Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les défis et les opportunités de l'exploration de données, des questions pratiques, des composants d'algorithmes et des applications telles que l'analyse du panier d'achat.
Introduit les bases de l'apprentissage automatique, couvrant la classification supervisée, les limites de décision et l'ajustement de la courbe polynomiale.
Se penche sur l'analyse des données topologiques, en mettant l'accent sur les fondements mathématiques des réseaux neuronaux et en explorant l'hypothèse multiple et l'homologie persistante.
Couvre l'algorithme de recherche le plus proche du voisin et le lemme de Johnson-Lindenstrauss pour la réduction de la dimensionnalité, en explorant les techniques de prétraitement et le hachage sensible à la localité.
Introduit la classification des documents en utilisant des fonctionnalités telles que les mots et les métadonnées, et des modèles tels que k-Nearest-Neighbors et word embeddings.
Explore l'invariance, la causalité et la robustesse de l'analyse des données, en abordant les défis et les implications pour la généralisation de la distribution.
Explore lutilisation des modèles de mélange gaussien pour la transition du clustering à la classification, couvrant la classification binaire, lestimation des paramètres et le classificateur Bayes optimal.