Méthodes de descente et méthode de Newton avec recherche par ligne
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.
Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.
Présente les méthodes Quasi-Newton pour l'optimisation, expliquant leurs avantages par rapport aux approches traditionnelles comme Gradient Descent et Newton's Method.
Explore des techniques d'optimisation telles que la descente de gradient, la recherche de lignes et la méthode de Newton pour une résolution efficace des problèmes.
Explore l'optimalité des taux de convergence dans l'optimisation convexe, en mettant l'accent sur la descente accélérée des gradients et les méthodes d'adaptation.