Discute de la fonction gamma, de ses propriétés et de l'approximation de Stirling pour les grandes factorielles, en soulignant leur importance dans les méthodes mathématiques pour la physique.
Discute de la série Laurent et du théorème des résidus dans l'analyse complexe, en se concentrant sur les singularités et leurs applications dans l'évaluation des intégrales complexes.
Explore les domaines simplement connectés dans l'analyse complexe, y compris les fonctions holomorphiques, la formule intégrale de Cauchy, et la série Taylor.