Optimisation avec contraintes: Algorithme de point d'intérieur
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la méthode lagrangienne augmentée avec des contraintes d'égalité et d'inégalité dans l'optimisation, en soulignant l'importance des variables slack.
Explore les flux réseau, la méthode simplex, la programmation linéaire, les solutions arborescentes et les solutions doubles dans les problèmes d'optimisation.
Couvre l'algorithme Branch & Bound pour une exploration efficace des solutions possibles et discute de la relaxation LP, de l'optimisation du portefeuille, de la programmation non linéaire et de divers problèmes d'optimisation.
Explique le processus de recherche d'une solution réalisable de base initiale pour les problèmes d'optimisation linéaire à l'aide de l'algorithme Simplex.
Explore les méthodes de gradient adaptatif comme AdaGrad, AcceleGrad et UniXGrad, en se concentrant sur leurs taux d'adaptation et de convergence locaux.
Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.