Explore la diagonalisation des matrices à travers des valeurs propres et des vecteurs propres, en soulignant l'importance des bases et des sous-espaces.
Couvre la théorie et les exemples de matrices de diagonalisation, en se concentrant sur les valeurs propres, les vecteurs propres et lindépendance linéaire.
Explore la similarité de la matrice, la diagonalisation, les polynômes caractéristiques, les valeurs propres et les vecteurs propres dans l'algèbre linéaire.
Couvre la décomposition d'une matrice dans ses valeurs propres et ses vecteurs propres, l'orthogonalité des vecteurs propres et la normalisation des vecteurs.
Explore la régression linéaire avec et sans covariables, couvrant des modèles capturés par des distributions indépendantes et des outils comme des sous-espaces et des projections orthogonales.