Séance de cours

Principe de variation en mécanique quantique

Séances de cours associées (35)
Réseaux neuronaux : formation et optimisation
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Réseaux neuronaux : Perceptrons multicouches
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Réseaux neuronaux : régression et classification
Explore les réseaux neuronaux pour les tâches de régression et de classification, couvrant la formation, la régularisation et des exemples pratiques.
Réseaux neuronaux
Explore les réseaux neuronaux, les couches cachées, les ajustements de poids, les fonctions d'activation et le théorème d'approximation universel.
Apprentissage profond pour les véhicules autonomes: Apprentissage
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.
Réseaux neuraux graphiques: monde interconnecté
Explore l'apprentissage à partir de données interconnectées avec des graphiques, couvrant les objectifs de recherche modernes de ML, les méthodes pionnières, les applications interdisciplinaires, et la démocratisation du graphique ML.
Réseaux neuronaux multicouches: Deep Learning
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond.
Amélioration des modèles du chemin visuel ventral
Explore les modèles de calcul du système visuel ventral, en se concentrant sur l'optimisation des réseaux pour les tâches réelles et la comparaison avec les données cérébrales.
Les principes fondamentaux de l'apprentissage profond
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Deep Learning: Représentations de données et réseaux neuraux
Couvre les représentations de données, le sac de mots, les histogrammes, le prétraitement des données et les réseaux neuronaux.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.