Explore les séquences de tours, les homomorphismes et leurs applications en topologie, y compris le calcul de l'homologie et la construction de télescopes.
Démontre l'équivalence entre l'homologie simpliciale et singulière, prouvant les isomorphismes pour les complexes s finis et discutant de longues séquences exactes.
Explore l'invariance de l'homotopie et son application à des groupes d'homologie de quotients, mettant en valeur l'isomorphisme et l'homotopie en chaîne.