Démontre l'équivalence entre l'homologie simpliciale et singulière, prouvant les isomorphismes pour les complexes s finis et discutant de longues séquences exactes.
Présente l'homologie comme un outil pour distinguer les espaces dans toutes les dimensions et fournit des informations sur sa construction et ses applications.
Explore l'invariance de l'homotopie et son application à des groupes d'homologie de quotients, mettant en valeur l'isomorphisme et l'homotopie en chaîne.