Essais d'hypothèses statistiques et types d'erreurs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Examine les tests d'hypothèse dans les statistiques, en mettant l'accent sur la prise de décision basée sur des données d'échantillon et le contrôle des probabilités d'erreurs.
Explore le traitement du signal neuronal pour les interfaces cerveau-ordinateur, y compris les techniques de décodage comme les filtres Kalman et le tri des pics.
Explore la conversion analogique-numérique, l'optimisation du signal neuronal, les architectures multicanaux et les techniques de compression sur puce en neuroingénierie.
Explore l'activité neuronale, les signaux électromagnétiques, EEG, MEG, les propriétés des signaux, les sources sonores, les méthodes d'analyse et les techniques de décodage.
Explore la résonance magnétique nucléaire, les principes d'IRM, les séquences de pouls, la reconstruction d'images, les considérations de sûreté et la normalisation du volume dans l'imagerie cérébrale.