Couvre la transformée de Fourier, ses propriétés et ses applications dans le traitement du signal et les équations différentielles, démontrant son importance dans l'analyse mathématique.
Explore l'utilisation de la transformation de Fourier pour résoudre des équations différentielles, en se concentrant sur un exemple spécifique et en dérivant la formule de la solution étape par étape.
Discute de l'analyse complexe, en se concentrant sur le théorème des résidus et les transformées de Fourier, avec des exercices pratiques et des applications dans la résolution des équations différentielles.
Explore les systèmes LTI stables grâce à l'analyse de la réponse en fréquence, aux propriétés de convolution et aux solutions d'équations différentielles.
Explore la résolution du problème Poisson en utilisant la transformée de Fourier, en discutant des termes sources, des conditions aux limites et de l'unicité de la solution.
Explore les propriétés élémentaires des transformées de Fourier, de la convolution, du théorème de Parseval et de la solution d'Alembert de l'équation des ondes en utilisant les transformées de Fourier et la convolution.
Explore les propriétés de la transformée de Fourier avec des dérivés, cruciales pour la résolution des équations, et introduit la transformée de Laplace pour la transformation du signal.